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Abstract—In this paper we derive the conditional probability 
of error for cascaded discrete memoryless channels (DMC). We 
compare the Binary- Input Binary- Output (2, 2) and the 
cascaded (2, 3) DMCs for optimum system performance. We 
consider the underwater acoustic wireless sensor networks where 
sensor nodes are limited in power, computational capacities, and 
memory. We focus on the joint (2, 3) DMC in order to maximize 
the detection and estimation of received signal by exploiting 
stochastic resonance effect. 
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I. INTRODUCTION 

Threshold devices can enhance the efficiency of a 
distributed wireless sensor networks and reduce the cost of 
target detection by minimizing the probability of false alarm 
under noisy and realistic conditions. In underwater acoustic 
wireless sensor networks where sensor nodes are limited in 
power, computational capacities and memory [2], (2, 3) DMC 
play an important role in maximizing channel capacity  and 
minimizing probability of error by exploiting Stochastic 
Resonance (SR) effect   [1]- [7].  

In general, the SR phenomenon is a non-linear effect where 
in communication systems the transmission of the information 
is enhanced in the presence of the additive noise [7], [9]. 

In this paper we will consider probability of error as a 
performance measure and study how the probability of error 
varies with the decision threshold in the presence of AWGN. 
We will focus on the joint Binary-Input and Ternary-Output 
system model. 

In Binary-Input Ternary-Output discrete memoryless 
channels, the optimum detector compares the input signal with 
a set of three arbitrarily defined thresholds in the presence of 
Additive White Gaussian Noise (AWGN) [1]. The placing of 
the thresholds as shown in Fig.1 is in such a way to minimizes 
the probability of error and maximize the probability of correct 
detection.  

After deriving the analytic relationship for the probability 
of error in joint (2, 3) DMC, we will examine how the 
probability of error varies with respect to the arbitrarily defined 
decision threshold and noise power. Moreover, we will revisit 

the (2, 2) DMC in order to compare the different threshold 
devices for better signal detection. Furthermore, we will 
examine SR effect by generating three dimensional plots that 
relates the probability of correct detection, decision threshold 
and noise power values.  

This paper is organized as follows. Section II describes the 
systems model. Section III derives the analytical relationship 
for the average conditional probability of error in the joint (2, 
3) DMC. Finally section IV describes the results and 
conclusions. 

II. SYSTEM MODEL 

The input to the threshold communication channel is the 
signal that takes the binary values ±A as in [1]. The physical 
model is represented in Fig.1. The joint (2, 3) DMC detector 
transforms the observation into a value which is finally 
compared to a threshold value given it is greater or less than 
the optimum zero threshold to make a decision. The DMC is 
completely characterized by the transition probabilities of the 
output conditioned by the input probabilities as shown in Fig.2. 

Adapting the model of [1], we derive the analytic 
relationship for the probability of error in the joint (2, 3) DMC. 
We investigate the effect of AWGN on the average conditional 
probability of error of the joint (2, 3) DMC for different values 
of threshold and noise power. 

III. THE JOINT (2, 3) DMC & CONDITIONAL 
PROBABILITY OF ERROR 

The  joint (2, 3) DMC is characterized by a binary input 
random variable 𝑋 , a ternary output random variable 𝑌  as 
shown in Fig.1.The  transition probabilities are given by: 

𝑃!! = 𝑃(! ! ! |𝑋 = 1) ,!! !" ! 𝑃!𝑌 = ! |𝑋 = ! ) 

𝑃!" ! ! !𝑌 = ! 1!! ! ! ! ,!! !" ! ! (𝑌 ! ! !! ! ! 1!  

𝑃!! ! ! ! ! = ! !𝑋 = ! ! ! ,! !" ! ! ! ! ! ! ! !! ! ! ! !  

Where ! !" ! represents a conditional probability of receiving 
signal ! !!given signal !   was transmitted. 

We define conditional probabilities as shown in Fig.2 to 
investigate the signal detection performance of the joint (2, 3) 
DMC. We assumed antipodal signaling and a new symmetric 
decision threshold is defined around the optimum threshold in 
the (2, 2) DMC which gives rise into three distinct regions at  
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Fig.1. System model of the joint (2, 3) DMC with additive Gaussian 
noise. Where X and Y are the input and output random variables and 
N is the Gaussian additive noise. 

the output as shown in Fig.1. We define probability of miss as 
the conditional probability that the received signal is less than 
the positive threshold value  given it is greater or less than  the 
zero optimum threshold in the (2, 2) DMC, when bit 1 is 
transmitted. Similarly the probability of false alarm is the 
conditional probability that the received signal is greater than  
the symmetric  negative threshold given that the received 
signal is less than or greater than  the optimum threshold in the 
(2, 2) DMC when bit 0 is transmitted. Thus we have the 
following relationship for the probability of error associated 
with bit 1: 

 𝑃 𝑒!𝑆! !
! ! ! ! !!

! ! !
! !   (1)  

where ! !  is the region for which the conditional probability 
! ! !! !  is less than the threshold as shown in Fig.3. Also ! !  is 
the region for which the conditional probability!! ! !! !   is 
greater than the zero decision threshold  in the (2, 2) DMC that 
we correctly decode bit 1 is transmitted. Also !  is the flip over 
probability in the (2, 2) DMC as shown in Fig.2. Depending on 
these arbitrarily defined regions of interest, we calculate the 
average conditional probability of error, !! ! !! !  associated 
with bit 1 as follows: 

These two areas are intersecting in a certain fashion as 
given below 

                          ! ! ! ! ! ! ! 𝑓! ! !! ! !
!

! !"         (2) 

where the ! ! !! !  is the conditional probability density 
function of ! ! . In general ! (! !! ) is given by  

 ! ! ! !! ! ! !

! ! !!
!!! !!

! ! ! ! !

! ! !             (3) 

Thus, 

                     ! ! ! ! 𝐷! ! !

! ! ! !
!!! !!

! ! ! ! !

! ! !
!

!        (4) 

For a Gaussian random variable, ! ! 𝜇! ! !  a simple 
change of variable in the integral in order to compute 
! ! ! > !  results in: 

! ! ! > ! = !
! ! !

!
 , where ! !  is the probability and  ! !  is 

an error function defined by 

 Fig.2. Conditional probabilities of the joint (2, 3) DMC with ±1 input 
and ±1, 0 output values. 

 ! ! ! ! ! !
! !

!!! !!
! ! !

!
!
! !"            (5) 

Using (5), (4) can be reduced into 

      ! ! ! ! ! ! ! ! ! ! !
!

! ! ! ! ! !
!

!     (6) 

Also, 

    ! ! ! ! ! ! !! ! !"
!

!                     (7) 

Substituting (3) and (5) we obtain 

 !!! ! ! ! ! ! ! ! !
!
!                    (8) 

The flip over probability associated with bit 1 is also  
transferred as the output of the (2, 3) DMC. 

Therefore the average conditional probability of error 
associated with bit 1 can be simplified as  

      ! ! ! ! ! ! − ! !
!! ! !

! ! ! !! !
!

! ! ! !
!

! !            (9)   

Following similar approach we calculated the probability 
of error associated with bit 0 as follows: 

               ! ! ! ! !
! ! ! ! ! !

! ! !
! !                                  (10) 

Where ! !  is the region for which the conditional 
probability ! ! !! !  is greater than the negative threshold 
shown in Fig.3. Also ! !  is the region for which the conditional 
probability!! ! !! !  is less than the zero decision threshold in 
the (2, 2) DMC. The flip over probability!!   associated with 
bit 0 is transferred as the output of the (2, 3) DMC. 

Thus, 

                 ! ! ! ∩ ! ! ! ! ! ! !! ! )
!

! ! !"               (11)                    

 Using (3) and (5) we get 

                 ! ! ! ! ! ! ! ! ! ! ! ! !
!

− ! !
!

 (12) 

Also, 

 ! ! ! ! ! !  ! !
!

   (13) 

Therefore the probability of error associated with bit 0 in 
the joint (2, 3) DMC can be reduced into   
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Fig.3. Regions of interest in the joint (2, 3) DMC. Bit 0 and 1 are 
represented by voltage waveforms 𝑺!  and ! !  respectively. A is the 
signal amplitude and Ɵ is our symmetric decision threshold. 

                            

           𝑃 𝑒 ! ! ! ! ! ! ! ! !
! ! ! !

! ! ! !
!

! ! ! !
!

! !    (14) 

Using (9) and (14) the overall average conditional 
probability of error, ! ! !!  in the joint (2, 3) DMC can be 
simplified as follows: 

       ! ! ! ! ! ! ! ! 𝑝 !
! ! ! !

𝝈 ! ! !
!

! ! ! !
!

] ! ! !  (15) 

 We also revisited the (2, 2) and the simple (2, 3) DMCs to 
study the performance of the different threshold devices and 
deduce the tradeoff between the signal amplitude and the 
decision threshold.  

Thus the average probability of error in the (2, 2) DMC 
with a decision threshold can be summarized as follows 

The probability that we declare a target is present when in 
fact is not present is given  

               𝑃 ! ! ! ! !

! ! ! !
  ! !!

! !!! ! ! !

! ! ! !"
!

!        (16) 

Performing a simple change of variable and using (5), we 
get 

                   ! ! ! ! ! !
! ! ! !

!
                      (17) 

Similarly the probability that we miss a target when in fact 
it is present is given by 

                 ! ! ! ! ! ! ! !
! ! ! !

!
!!        (18) 

Thus, the average probability of error of the (2, 2) DMC as 
a function of threshold and noise power is given by 

   ! ! ! ! ! ! ! !
! ! ! !

!
! ! ! ! ! ! !

! ! ! !

!
 (19) 

    Where ! !  and  ! !  are the prior probabilities of bit 0 and 1 
respectively. 

 The average probability of error for the simple (2, 3) 
DMC with a symmetric decision threshold as shown in the 
Fig.3 can be calculated as follows: 

The error associated with bit 0 and 1 are the areas under 
the pdfs, !! ! !! ! ! ! !   and ! ! ! ! ! !   respectively. 

Thus the average probability of error in the simple (2, 3) 
DMC is given as follows 

 ! ! ! ! ! ! ! ! ! ! ! ! !
!

! ! ! × ! ! !
! ! ! !

!
     (20) 

IV. RESULTS & CONCLUSIONS 

As it is depicted in Fig.4 the average probability of error in 
the (2, 2) DMC is not only a function of the decision threshold  
but also the noise power. In order the threshold device to 
exhibit noise enhance effect the decision threshold should be 
greater than the signal amplitude. However, the more the 
decision threshold  moves away relative the signal amplitude 
the performance of the detector deteriorates in line with 
common sense. 

In contrast to the tradeoff between the signal amplitude and 
the decision threshold  that we deduced in the (2, 2) DMC, the 
joint (2, 3) DMC behaves differently. The symmetric decision 
threshold  depicted in Fig.3 need to be less than the signal 
amplitude in order the noise enhanced effect to be exploited. 
The performance of the joint (2, 3) DMC depends both on the 
threshold  and the noise power as shown in Fig.5. 

We generated the results in Fig.4 using (19) to deduce the 
relationship between the signal amplitude and the threshold. As 
the threshold value is greater than the signal amplitude as 
shown in Fig.4 the detection performance of the detector 
increases with increase of the additive noise, for which it 
reaches maximum at an optimum value of the noise power.    

Beyond the optimum value of the noise, in accordance with 
common sense, the performance of the (2, 2) DMC deteriorates 
and the addition of noise becomes disadvantageous. However, 
as the decision threshold moves far away from the signal 
amplitude with ask too much for the detector to decide on the 
received signal that is much smaller than our threshold. Thus 
we deduce the noise enhanced effect in case of the (2, 2) DMC 
occurs in the interval for which the threshold value is slightly 
greater than the signal amplitude. However, as shown in the 
Fig.5 the joint (2, 3) DMC doesn’t exhibit SR in this interval. 
The threshold value needs to be less than the signal amplitude 
in order to exploit the noise enhanced effect of SR. For the 
threshold value greater than the signal amplitude as shown in 
Fig.5 the average conditional probability of error increases 
with the increase of the additive noise power. Thus, the 
symmetric decision threshold in the joint (2, 3) DMC need to 
be less than the signal amplitude for better signal detection. 

As the average probability of error is a function of signal 
amplitude, threshold and noise power values, using (15) we 
generated three dimensional plot depicted in Fig.6 that relates 
probability of correct detection (1-! !), the noise power  and the 
symmetric threshold. For threshold value greater than the 
signal amplitude we end of making a total error and there is no 
reliable communication. However, for threshold value less than 
the signal amplitude, as the noise increases from zero until a 
certain value there is a remarkable increase in the probability of 
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correct detection. Beyond that limit the addition of noise 
worsens the performance of the detector. 

 
Fig.4. (2, 2) DMC performance with the AWGN. The solid and 
dotted lines represent the average probabilities of detection and error 
respectively.  

As depicted in Fig.7 by using (15), the increase of the 
signal amplitude from A=1 to 1.4 reduces the probability of 
error. Thus by carefully selecting the systems parameters in 
the presence of additive white Gaussian noise, one can achieve 
better signal detection and estimation. Moreover as shown in 
Fig.8 in both (2, 3) DMCs the probability of detection 
deteriorates so fast as the symmetric decision threshold value 
increases far away from the signal amplitude. However, the (2, 
2) DMC exhibits slow decay in the probability of detection as 
the  single decision threshold increases far away from the 
signal amplitude. This slow decrease in the probability of 
detection is from the fact that, increasing the threshold 
increases the probability of missing a target. But, the reduction 
in probability of false alarm helps to compensate the increase 
in the probability of miss, which ultimately balances the 
average probability of error. 

   Furthermore, we generated Fig.8 using (15), (19) and (20) in 
order to compare the performance of the (2, 2), the simple (2, 
3) and the joint (2, 3) DMCs. We observed a remarkable 
improvement in the detection of the received signal in the 
presence of additive Gaussian noise in case of the joint (2, 3) 
DMC compared to the other two DMCs. 
 

 
Fig.5. Performance metrics in the joint (2, 3) DMC. The solid line 
represents probability of correct detection, while the dotted line 
represents probability of error. 

 

          Fig.6. SR phenomenon in the joint (2, 3) DMC. 

 

 
Fig.7. SR in the joint (2, 3) DMC for different value of signal 
amplitude. 

     The result of this work indicates how one could compare 
the performance of the (2, 2) and  joint (2, 3) DMCs. We also 
investigated how one could improve the probability of correct 
detection in threshold  based systems by exploiting the SR 
effect. 
 

 

 
               Fig.8. DMCs performance Comparison. 
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